LevelApp Docs v1.0 just launched!⭐ Star us on GitHub
Getting StartedFirst Evaluation

3. Your First Evaluation

Let’s run a minimal conversation test to validate your setup.

1. Check for simple_batch.json

Ensure you have the simple_batch.json file in your repo root. It should include something like this:

{
  "test_batch": {
    "id": "0001-first-eval",
    "interactions": [
      {
        "id": "turn-1",
        "user_message": "Hello, what can you do?",
        "agent_reply": "",
        "reference_reply": "I can evaluate AI model outputs against expectations.",
        "interaction_type": "opening",
        "reference_metadata": { "intent": "greeting", "sentiment": "neutral" },
        "generated_metadata": {}
      }
    ],
    "description": "First basic test"
  },
  "endpoint": "http://localhost:8080",
  "model_id": "meta-llama/Llama-3.3-70B-Instruct",
  "attempts": 1,
  "test_name": "first_eval"
}

2. Call the /evaluate endpoint through curl or use Postman:

curl -X POST http://localhost:8080/evaluate \
  -H "Content-Type: application/json" \
  -d @simple_batch.json | jq

You should see a JSON response similar to this:

{
  "message": "Evaluation completed successfully",
  "results": {
    "scenarios": [
      {
        "scenario_id": "0001-first-eval",
        "attempts": [
          {
            "interactions": [ { /* ... */ } ],
            "average_scores": { /* ... */ }
          }
        ],
        "average_scores": { /* ... */ }
      }
    ]
  }
}

3. Quick sanity checks

  • If you see "Request failed" in agent_reply, verify your LLM endpoint (endpoint + model_id).
  • No JSON? Check your .env credentials and restart the server.